home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Multimedia Differential Equations
/
Multimedia Differential Equations.ISO
/
diff
/
chapter6.4p
< prev
next >
Wrap
Text File
|
1996-08-12
|
6KB
|
250 lines
à 6.4èForced Oscillations - Damped
äè Solve ê problem
âèèFor ê dampled, forced simple harmonic oscillaër equation
y»» + 4y» + 5y = 6sï[ßt],èwhat value çèß will
produce ê largest particular solution?èThe general equation
isèèèy»» + 2sy» + Üìy =èF╠sï[ßt]èThe maximum amplitude
ç ê particular solution occurs whenèß = Ü.èAs Üì = 5
ß = √5 rad súî will maximize ê amplitude.
éSèèIn all real systems, êre is also some dampïg present.è
Thus ê ëtally unbounded resonance behavior will not occur.
However, êre is still a modified resonance effect.
è For a DAMPLED, EXTERNALLY DRIVEN simple harmonic oscillaër
ê differential equation becomes
y»» + 2sy» + Üìy = F╠cos[ßt]è (or F╠cos[ßt])
è The overall solution ë this differential equation consists
ç ê usual two components.èFirst, ê HOMOGENEOUS equation
is solved as was done ï Section 6.2 yieldïg ê three types
ç damped solutions.èThe particular solution ç ê NON-
HOMOGENEOUS is solved by ê method ç determïed coeffi-
cients as ï Secën 4.3.è Every term ç ê homogeneous
solution will contaï a negative exponential facër å hence
ê homogeneous solution will decay ë zero ï time å hence
is called ê TRANSIENT SOLUTION.èThe particular solution
will be a lïear combïation çècos[ßt] å sï[ßt].èThus
this solution will be always present å is called ê
STEADY STATE SOLUTION.
èèAs mentioned above, a modified resonance can still occur.
The general solution ç ê damped, driven simple harmonic
oscillaër is
èèèèèèèèèèèèèèèèèè F╠
y = CeúÖ▐sï(√[Üì-ßì]t+φ) + ──────────────────── sï(ßt+Θ)
èèèèèèèèèèèèèè √[(Üì-ßì)ì + 4sìßì]
The analog ç ê third term ï ê undamped case is
èF╠
───────
Üì-ßì
In ê undamped case, when ß = Ü ê solution becomes ïfïite
but ï ê damped case,èß = Üèleaves ê amplitude ç ê
steady state term as
èF╠
─────
2sß
Thus, ê resonance angular frequency i.e. when ê natural
angular frequency Ü is ê same as ê drivïg angular
frequency ß, ê steady state is maximized but doesn't become
unbounded.
1èèèFor ê damped, forced simple harmonic oscillaër
equation
y»» + 6y» + 10y =è7sï[ßt],èèèèèèè
what value ç ß will produce ê largest amplitude steady
state solution?è
A)è√10 rad súîèB) 6 rad súîèC)è7 rad súîèD)è10 rad súî
ü èèThe general equation ç ê damped, driven simple
harmonic oscillaër is
èèèy»» + 2sy» + Üìy =èF╠sï[ßt]è
The amplitude ç ê particular solution is given by
èèèèèèèèèèèèèèèè F╠
èèèèèèèèèèèè────────────────────
èèèèèèèèèèèè √[(Üì-ßì)ì + 4sìßì]
It will be maximized when ê denomïaër is mïimized i.e.
whenè
ß = Ü
As
Üì = 10
ß = √10 rad súî
will maximize ê amplitude.
Ç A
2è Fïd ê transient solution forè
y»» + 6y» + 10y =è7sï[5t]
A)èC¬eúÄ▐cos[t] + C½eúÄ▐sï[t]
B)èC¬eúÄ▐cos[5t] + C½eúÄ▐sï[5t]
C)èC¬eúÄ▐cos[7t] + C½eúÄ▐sï[7t]
D)èC¬eúÄ▐cos[10t] + C½eúÄ▐sï[10t]
ü èèTo fïd ê TRANSIENT SOLUTION, ê homogeneous differ-
ential equation is solved
y»» + 6y» + 10y = 0
Substitutïgèy = ¡▐ å cancellïg yields
mì + 6m + 10 = 0
This does not facër å ê quadratic formula gives
m = -3 + i, -3 - i
Thus ê transient solution is
yè=èC¬eúÄ▐cos[t] + C½eúÄ▐sï[t]
Ç A
3è Fïd ê steady state solution forè
y»» + 6y» + 10y =è7sï[5t]
A)è7/75 cos[5t]è+è14/75 sï[5t]
B)è7/75 cos[5t]è-è14/75 sï[5t]
C)è-7/75 cos[5t]è+è14/75 sï[5t]
D)è-7/75 cos[5t]è-è14/75 sï[5t]
üèè To fïd ê STEADY STATE, ê method ç undetermïed
coefficients is used.èAssume a solution ç ê form
yè =èAcos[5t] + Bsï[5t]
Differentiatïg
y»è=è-5Asï[5t] + 5Bcos[5t]
y»» =è-25Acos[5t] - 25Bsï[5t]
Substitutïg ïë ê differential equation yields
-25Acos[5t] - 25Bsï[5t] + 6[-5Asï[5t] + 5Bcos[5t]]
+ 10[Acos[5t] + Bsï[5t] ]è=è7cos[5t]
Simplifyïg
èè cos[5t]{-25A + 30B + 10A} + sï[5t]{-25B -30A + 10B} = 7cos[5t]
or
cos[5t]{-15A + 30B} + sï[5t]{-30A - 15B} = 7cos[5t]
Equatïg ê coefficients ç ê functions gives
-15A + 30Bè=è7
-30A - 15Bè=è0èi.e.èB = -2A
Inë ê first equation
-15A - 60Aè= 7èi.e.èA = -7/75 å B = 14/75
The steady state solution is
-7/75 cos[5t]è+è14/75 sï[5t]
Note that ê amplitude ç ê steady state solution is
√ (-7/75)ì + (14/75)ìè=è7√5 /75 ≈ 0.208
Ç C
4è Fïd ê transient solution forè
y»» + 6y» + 10y =è7sï[3t]
A)èC¬eúÄ▐cos[t] + C½eúÄ▐sï[t]
B)èC¬eúÄ▐cos[5t] + C½eúÄ▐sï[5t]
C)èC¬eúÄ▐cos[7t] + C½eúÄ▐sï[7t]
D)èC¬eúÄ▐cos[10t] + C½eúÄ▐sï[10t]
ü è The only difference between this å Problem 2 is ê
drivïg angular frequency has been reduced from 5 ë 3.èThe
transient solution only depends on ê left hå side å
so is ê same as Problem 2
yè=èC¬eúÄ▐cos[t] + C½eúÄ▐sï[t]
Ç A
5è Fïd ê steady state solution forè
y»» + 6y» + 10y =è7sï[3t]
A)è7/325 cos[3t]è+è126/325 sï[3t]
B)è7/325 cos[3t]è-è126/325 sï[3t]
C)è-7/325 cos[3t]è+è126/325 sï[3t]
D)è-7/325 cos[3t]è-è126/325 sï[3t]
üèè To fïd ê STEADY STATE, ê method ç undetermïed
coefficients is used.èAssume a solution ç ê form
yè =èAcos[3t] + Bsï[3t]
Differentiatïg
y»è=è-3Asï[3t] + 3Bcos[3t]
y»» =è-9Acos[3t] - 9Bsï[3t]
Substitutïg ïë ê differential equation yields
-9Acos[3t] - 9Bsï[3t] + 6[-3Asï[3t] + 3Bcos[3t]]
+ 10[Acos[3t] + Bsï[3t] ]è=è7cos[3t]
Simplifyïg
èè cos[3t]{-9A + 18B + 10A} + sï[3t]{-9B -18A + 10B} = 7cos[3t]
or
cos[3t]{A + 18B} + sï[5t]{-18A + B} = 7cos[3t]
Equatïg ê coefficients ç ê functions gives
A + 18Bè=è7
-18A + Bè=è0èi.e.èB = 18A
Inë ê first equation
A + 324Aè= 7èi.e.èA = 7/325 å B = 126/325
The steady state solution is
7/325 cos[3t]è+è126/325 sï[3t]
Note that ê amplitude ç ê steady state solution is
√ (-7/325)ì + (126/325)ìè ≈ 0.388
Comparïg this with Problem 3 withè
7sï[5t]èèamplitude = 0.208
7sï[3t]èèamplitude = 0.388
This ïcrease ï amplitude occurs becuase ê resonance angular
frequency is √10 =è3.14 rad súî is much closer ë ê drivïg
frequency ç 3 rad súî ï this problem versus ê Problem 5
drivïg frequency ç 5 rad súî.
Ç A